$\rangle\rangle\rangle$

IC1301 – WiPE

Towards printed wearable antennas for energy harvesting

M. Mrnka, J. Lacik, <u>Z. Raida</u> Brno University of Technology Technicka 12, 616 00 Brno, Czechia

Motivation

In-car wireless sensor networks

Parameters of human body

	ε _r [-]	ε _r [-]	σ [S/m]	σ [S/m]
Tissue	2.40 GHz	5.80 GHz	2.40 GHz	5.80 GHz
Skin	38.063	35.114	1.441	3.717
Fat	5.285	4.955	0.102	0.293
Muscle	52.791	48.485	1.705	4.962

- Lossy dielectrics → poor efficiency of slot antennas
- What range of frequencies?

Measurement of available energy

- GSM 1800 1.840 GHz
- UMTS 2100 2.145 GHz
- WiFi 2400 2.445 GHz
- Required bandwidth
 BW = 28%

Additional requirements

- Energy harvesting conditioned by
 - Omnidirectional radiation patterns
 - Very high radiation efficiency
- Proximity of human body → ground plane preferred to shield the body
- Low profile (small distance) from ground plane
 → magnetic antenna preferred
- Dielectric resonator antenna

Dielectric resonator antenna

• Arlon AR600 $h = 1.575 \text{ mm}, \epsilon_r = 6.15, \tan \delta = 0.003$

THAMAE, L. Z., WU, Z. Broadband bowtie dielectric resonator antenna. *IEEE Transactions on Antennas and Propagation*, 2010, vol. 58, no. 11, p. 3707-3710.

Dielectric resonator antenna

- Optimum notch angle: 90 °
- Fundamental mode: HEM11
- Impedance bandwidth proportional to height of resonator (min. height for required BW: 25.2 mm)

Towards inkjet printing

But, the height of the DRA has to be reduced

DRA – impedance matching

CCOSE

DRA – patterns @ 1.840 GHz

DRA – patterns @ 2.145 GHz

DRA – patterns @ 2.445 GHz

DRA – final parameters

Frequency [GHz]	Radiation eff. [dB]	Total eff. [dB]
1.840	-0.050 (99.4 %)	-0.40 (95.5 %)
2.145	-0.062 (99.3 %)	-0.45 (94.9 %)
2.445	-0.083 (99.0 %)	-0.39 (95.6 %)

 Radiation efficiency: dielectric and conduction losses

 Total efficiency: Radiation efficiency increased by mismatch loss

Towards inkjet printing

- Available inks Sigma-Aldrich http://www.sigmaaldrich.com
 - Silver nanoparticle inks
 - Photovoltaic inks
 - Dielectrics inks
 - Semiconductor inks

...

Conclusions

- Dielectric resonator antennas
 - Acceptable parameters
 - Height of resonator to be reduced
 - Feeding to be redesigned
- Inkjet printing
 - Wide spectrum of inks available
 - The whole harvesting system can be printed
 - Special inks rather expensive
- Prototype of printed harvester under development

Thank you for your attention

Zbynek Raida

Faculty of Electrical Engineering and Communication Brno University of Technology

Technicka 12, 616 00 Brno, Czech Republic

Tel: +420 541 146 555

